In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

Python Sets

myset = {"apple", "banana", "cherry"}

Set
Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the other 3 are
List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.
* Note: Set items are unchangeable, but you can remove items and add new items.
Sets are written with curly brackets.

ExampleGet your own Python Server
Create a Set:

thisset = {"apple", "banana", "cherry"}
print(thisset)

{'banana', 'cherry', 'apple'}

Set Items
Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered
Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by
index or key.

Unchangeable
Set items are unchangeable, meaning that we cannot change the items after the set has been
created.

Once a set is created, you cannot change its items, but you can remove items and add new items.

Duplicates Not Allowed
Sets cannot have two items with the same value.

Example
Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

{'banana', 'cherry', 'apple'}

Note: The values True and 1 are considered the same value in sets, and are treated as duplicates:

Example
True and 1 is considered the same value:

thisset = {"apple", "banana", "cherry", True, 1, 2}
print(thisset)

{True, 2, 'cherry', 'apple', 'banana'}

thisset = {"apple", "banana", "cherry", True, 1, 2}
print(thisset)

{True, 2, 'cherry', 'apple', 'banana'}

Note: The values False and © are considered the same value in sets, and are treated as
duplicates:

Example
False and @ is considered the same value:
In [6]: thisset = {"apple", "banana", "cherry", False, True, 0}
print(thisset)
{False, True, 'cherry', 'apple', 'banana'}

Get the Length of a Set
To determine how many items a set has, use the len() function.

Example
Get the number of items in a set:

In [7]: thisset = {"apple", "banana", "cherry"}
print(len(thisset))

3

Set Items - Data Types
Set items can be of any data type:

Example
String, int and boolean data types:

In [8]: setl = {"apple", "banana", "cherry"}
set2 = {1, 5, 7, 9, 3}
set3 = {True, False, False}
print(setl)
print(set2)
print(set3)

{'banana‘’, ‘'cherry', ‘'apple'}
{1, 3, 5, 7, 9}
{False, True}

type()
From Python's perspective, sets are defined as objects with the data type 'set':

<class 'set'>
Example
What is the data type of a set?

In [9]: myset = {"apple", "banana", "cherry"}
print(type(myset))
<class 'set'>

The set() Constructor
It is also possible to use the set() constructor to make a set.

Example
Using the set() constructor to make a set:

In [10]: thisset = set(("apple", "banana", "cherry")) # note the double round-brackets
print(thisset)

{'banana‘’, ‘'cherry', ‘'apple'}

Python Collections (Arrays)
There are four collection data types in the Python programming language:

List is a collection which is ordered and changeable. Allows duplicate members.

Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate members.
Dictionary is a collection which is ordered** and changeable. No duplicate members.

In [11]:

In [12]:

In [13]:

In [14]:

*Set items are unchangeable, but you can remove items and add new items.

**As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries are
unordered.

When choosing a collection type, it is useful to understand the properties of that type. Choosing
the right

type for a particular data set could mean retention of meaning, and, it could mean an increase in
efficiency or security.

Access Items
You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified value is present
in a set, by using the in keyword.

Example
Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:
print(x)

banana

cherry
apple

Example
Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

True

Example
Check if "banana" is NOT present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" not in thisset)

False

Change Items

Once a set is created, you cannot change its items, but you can add new items.

Python - Add Set Items

Add Item
Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

ExampleGet your own Python Server
Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}
thisset.add("orange")
print(thisset)

{'orange', 'banana', 'cherry', 'apple'}

Add Sets

In [15]:

In [16]:

In [17]:

In [18]:

To add items from another set into the current set, use the update() method.

Example
Add elements from tropical into thisset:

thisset = {"apple", "banana", "cherry"}
tropical = {"pineapple"”, "mango", "papaya"}

thisset.update(tropical)
print(thisset)

{'papaya', 'cherry', 'apple', 'mango', 'pineapple', 'banana'}

Add Any lterable

The object in the update() method does not have to be a set, it can be any iterable object
(tuples, lists, dictionaries etc.).

Example
Add elements of a list to at set:

thisset = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]

thisset.update(mylist)
print(thisset)

{'cherry', 'apple', 'kiwi', 'orange', 'banana'}

Remove Item
To remove an item in a set, use the remove(), or the discard() method.

Example
Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}
thisset.remove("banana")
print(thisset)

{'cherry', "apple'}

Note: If the item to remove does not exist, remove() will raise an error.

Example
Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")
print(thisset)

{'cherry', '"apple'}

Note: If the item to remove does not exist, discard() will NOT raise an
error.

You can also use the pop() method to remove an item, but this method will remove a random item,
so you cannot be sure what item that gets removed.

The return value of the pop() method is the removed item.

Example

Remove a random item by using the pop() method:

In [20]: thisset = {"apple", "banana", "cherry"}
x = thisset.pop()
print(x)
print(thisset)
banana

{'cherry', 'apple'}

Note: Sets are unordered, so when using the pop() method, you do not
know which item that gets removed.

Example

The clear() method empties the set:
In [21]: thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

set()

Example

The del keyword will delete the set completely:
In [22]: thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

NameError Traceback (most recent call last)
Cell In[22], line 5

1 thisset = {"apple", "banana", "cherry"}

3 del thisset
----> 5 print(thisset)

NameError: name 'thisset' is not defined

Loop Iltems

You can loop through the set items by using a for loop:

ExampleGet your own Python Server
Loop through the set, and print the values:

In [23]: thisset = {"apple", "banana", "cherry"}

for x in thisset:
print(x)

banana
cherry
apple

Join Sets

There are several ways to join two or more sets in Python.
The union() and update() methods joins all items from both sets.

The intersection() method keeps ONLY the duplicates.

The difference() method keeps the items from the first set that are not in the other set(s).
The symmetric_difference() method keeps all items EXCEPT the duplicates.

Union
The union() method returns a new set with all items from both sets.

ExampleGet your own Python Server
Join setl and set2 into a new set:

In [24]: setl
set2

{"a", "b", "¢}
{1, 2, 3}

set3 = setl.union(set2)
print(set3)

{1J 2) 3) ‘a'J 'b|) lc'}
You can use the | operator instead of the union() method, and you will get the same result.

Example

In [25]: setl
set2

{"a", "b", "c"}
{1, 2, 3}

set3 = setl | set2
print(set3)

{1J 2) 3) ‘a'J 'b|) lC'}
Join Multiple Sets
All the joining methods and operators can be used to join multiple sets.

When using a method, just add more sets in the parentheses, separated by commas:

Example
Join multiple sets with the union() method:

In [26]: setl

{"a", "b", "c"}

set2 = {1, 2, 3}
set3 = {"John", "Elena"}
set4 = {"apple", "bananas", "cherry"}

myset = setl.union(set2, set3, set4d)
print(myset)

{'John', 1, 2, 3, 'Elena', ‘'cherry', 'apple', 'b', 'bananas', 'a', 'c'}
When using the | operator, separate the sets with more | operators:

Example
Use | to join two sets:

In [27]: setl

{"a", "b", "¢}

set2 = {1, 2, 3}
set3 = {"John", "Elena"}
setd = {"apple", "bananas", "cherry"}

myset = setl | set2 | set3 |set4
print(myset)

{'John', 1, 2, 3, 'Elena', 'cherry', 'apple', 'b', 'bananas', 'a', 'c'}

Join a Set and a Tuple

The union() method allows you to join a set with other data types, like lists or tuples.

The result will be a set.

In [28]:

In [29]:

In [30]:

In [31]:

Example
Join a set with a tuple:

X
n

{"a", "b", "c"}
(1, 2, 3)

y

z = x.union(y)
print(z)

{11 2) 3) ‘b') 'a|) ‘c'}

Note: The | operator only allows you to join sets with sets, and not with other data types like
you can
with the union() method.

Update
The update() method inserts all items from one set into another.
The update() changes the original set, and does not return a new set.

Example
The update() method inserts the items in set2 into setl:

setl
set2

{"a", "b", "c"}
{1, 2, 3}

setl.update(set2)
print(setl)

{1J 2) 3) la'J 'b|) ‘c'}

Note: Both union() and update() will exclude any duplicate items.

Intersection

Keep ONLY the duplicates

ANRRNRRNERRRRRRRRANRRRNNNY

The intersection() method will return a new set, that only contains the items that are present in
both sets.

Example
Join setl and set2, but keep only the duplicates:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

set3 = setl.intersection(set2)
print(set3)

{'apple'}

You can use the & operator instead of the intersection() method, and you will get the same
result.

Example
Use & to join two sets:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

set3 = setl & set2
print(set3)

{'apple'}

Note: The & operator only allows you to join sets with sets, and not with other data types like
you can with the intersection() method.

In [32]:

In [33]:

In [34]:

In [35]:

The intersection_update() method will also keep ONLY the duplicates, but it will change the
original set instead of returning a new set.

Example
Keep the items that exist in both setl, and set2:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

setl.intersection_update(set2)

print(setl)

{"apple’}

The values True and 1 are considered the same value. The same goes for False and @.
Example

Join sets that contains the values True, False, 1, and @, and see what is considered as
duplicates:

setl
set2

{"apple", 1, "banana", @, "cherry"}
{False, "google", 1, "apple", 2, True}

set3 = setl.intersection(set2)
print(set3)
{False, 1, 'apple'}

Difference

The difference() method will return a new set that will contain only the items from the first set
that are not present in the other set.

Example
Keep all items from setl that are not in set2:

setl = {"apple", "banana", "cherry"}
set2 = {"google", "microsoft", "apple"}
set3 = setl.difference(set2)
print(set3)

{'banana', 'cherry'}

You can use the - operator instead of the difference() method, and you will get the same result.

Example
Use - to join two sets:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

set3 = setl - set2
print(set3)

{'banana', 'cherry'}

Note: The - operator only allows you to join sets with sets, and not with other data types like
you can with the difference() method.

The difference_update() method will also keep the items from the first set that are not in the
other set, but it will change the original set instead of returning a new set.

Example
Use the difference_update() method to keep the items that are not present in both sets:

In [36]:

In [37]:

In [38]:

In [39]:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

setl.difference_update(set2)
print(setl)

{'banana', 'cherry'}

Symmetric Differences
The symmetric_difference() method will keep only the elements that are NOT present in both sets.

Example
Keep the items that are not present in both sets:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

set3 = setl.symmetric_difference(set2)
print(set3)

{'cherry', 'google', 'microsoft', 'banana'}

You can use the ”~ operator instead of the symmetric_difference() method, and you will get the
same result.

Example
Use ~ to join two sets:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

set3 = setl ~ set2
print(set3)

{'cherry', 'google', 'microsoft', 'banana'}

Note: The ~ operator only allows you to join sets with sets, and not with other data types like
you can with the symmetric_difference() method.

The symmetric_difference_update() method will also keep all but the duplicates, but it will
change the original set instead of returning a new set.

Example
Use the symmetric_difference_update() method to keep the items that are not present in both sets:

setl
set2

{"apple", "banana", "cherry"}
{"google", "microsoft", "apple"}

setl.symmetric_difference_update(set2)
print(setl)

{'microsoft', 'banana', 'cherry', 'google'}

Set Methods

Python has a set of built-in methods that you can use on sets.

Method Shortcut Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() - Returns a set containing the difference between two or
more sets

difference_update() -= Removes the items in this set that are also included in

another, specified set
discard() Remove the specified item

intersection()

sets
intersection_update()
other, specified set(s)
isdisjoint()

issubset()

other, specified set(s)
issuperset()

present in this set

pop()

remove()
symmetric_difference()
symmetric_difference_update()
another

union()

update()

Returns a set, that is the intersection of two other

Removes the items in this set that are not present in

Returns whether
Returns whether
Returns whether

Returns whether
Returns whether

two sets have a intersection or not
another set contains this set or not
all items in this set is present in

this set contains another set or not
all items in other, specified set(s) is

Removes an element from the set randumly

Removes the specified element

Returns a set with the symmetric differences of two sets
Inserts the symmetric differences from this set and

Return a set containing the union of sets
Update the set with the union of this set and others

